Exercise 23

Solve the initial-value problem.

$$
y^{\prime \prime}-y^{\prime}-12 y=0, \quad y(1)=0, \quad y^{\prime}(1)=1
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad \frac{d y}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
r^{2} e^{r x}-r e^{r x}-12\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-r-12=0
$$

Solve for r.

$$
\begin{gathered}
(r-4)(r+3)=0 \\
r=\{-3,4\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-3 x}$ and $e^{4 x}$. By the principle of superposition, then,

$$
y(x)=C_{1} e^{-3 x}+C_{2} e^{4 x} .
$$

Differentiate the general solution.

$$
y^{\prime}(x)=-3 C_{1} e^{-3 x}+4 C_{2} e^{4 x}
$$

Apply the initial conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
y(1) & =C_{1} e^{-3}+C_{2} e^{4}=0 \\
y^{\prime}(1) & =-3 C_{1} e^{-3}+4 C_{2} e^{4}=1
\end{aligned}
$$

Solving this system of equations yields $C_{1}=-e^{3} / 7$ and $C_{2}=e^{-4} / 7$. Therefore, the solution to the initial value problem is

$$
\begin{aligned}
y(x) & =-\frac{e^{3}}{7} e^{-3 x}+\frac{e^{-4}}{7} e^{4 x} \\
& =\frac{e^{4(x-1)}-e^{3(1-x)}}{7} .
\end{aligned}
$$

Below is a graph of $y(x)$ versus x.

